4.1 Article

The combination effects of trivalent gold ions and gold nanoparticles with different antibiotics against resistant Pseudomonas aeruginosa

Journal

GOLD BULLETIN
Volume 45, Issue 2, Pages 53-59

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13404-012-0048-7

Keywords

Au3+; Au NPs; Antibiotic resistance; Combination effect; Pseudomonas aeruginosa

Funding

  1. Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Ask authors/readers for more resources

Despite much success in drug design and development, Pseudomonas aeruginosa is still considered as one of the most problematic bacteria due to its ability to develop mutational resistance against a variety of antibiotics. In search for new strategies to enhance antibacterial activity of antibiotics, in this work, the combination effect of gold materials including trivalent gold ions (Au3+) and gold nanoparticles (Au NPs) with 14 different antibiotics was investigated against the clinical isolates of P. aeruginosa, Staphylococcus aureus and Escherichia coli. Disk diffusion assay was carried out, and test strains were treated with the sub-inhibitory contents of gold nanomaterial. Results showed that Au NPs did not increase the antibacterial effect of antibiotics at tested concentration (40 mu g/disc). However, the susceptibility of resistant P. aeruginosa increased in the presence of Au3+ and methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid, up to 147 %. As an individual experiment, the same group of antibiotics was tested for their activity against clinical isolates of S. aureus, E. coli and a different resistant strain of P. aeruginosa in the presence of sub-inhibitory contents of Au3+, where Au3+ increased the susceptibility of test strains to methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid. Our finding suggested that using the combination of sub-inhibitory concentrations of Au3+ and methicillin, erythromycin, nalidixic acid or vancomycin may be a promising new strategy for the treatment of highly resistant P. aeruginosa infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available