4.4 Article

Determining the BTR by conducting a Trans-Varestraint test using a high-speed camera and two-color pyrometry

Journal

WELDING IN THE WORLD
Volume 62, Issue 6, Pages 1237-1246

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s40194-018-0608-4

Keywords

High-speed camera; Two-color pyrometry; Trans-Varestraint test

Ask authors/readers for more resources

The Ni-Fe alloy consumable that applies to the welding of 9% nickel steel for LNG storage tanks is highly susceptible to solidification cracks. To evaluate susceptibilities such as the brittleness temperature range (BTR), a Trans-Varestraint test is generally conducted. However, it is difficult to evaluate the minimum strain value for the BTR and the real temperature at both ends of a solidification crack in a conventional Trans-Varestraint test because these values are measured indirectly. In this study, we propose determining the temperature range by conducting in-situ observations during a Trans-Varestraint test using a high-speed camera and two-color pyrometry so that the temperature range can be measured directly from the temperatures at both ends of the crack. Furthermore, we measured the augmented strain from the time elapsed since the initiation of bending. This method allowed us to successfully measure the augmented strain and the temperature range in the Trans-Varestraint test and to determine the BTR more accurately.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available