4.7 Article

Tropospheric distribution of sulphate aerosols mass and number concentration during INDOEX-IFP and its transport over the Indian Ocean: a GCM study

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 12, Issue 14, Pages 6185-6196

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-12-6185-2012

Keywords

-

Funding

  1. Indo-French Centre for the Promotion of Advanced Research/Centre Franco-Indien Pour la Recherche Avancee [1911-2]

Ask authors/readers for more resources

The sulphate aerosols mass and number concentration during the Indian Ocean Experiment (INDOEX) Intensive Field Phase-1999 (INDOEX-IFP) has been simulated using an interactive chemistry GCM. The model considers an interactive scheme for feedback from chemistry to meteorology with internally resolving microphysical properties of aerosols. In particular, the interactive scheme has the ability to predict both particle mass and number concentration for the Aitken and accumulation modes as prognostic variables. On the basis of size distribution retrieved from the observations made along the cruise route during IFP-1999, the model successfully simulates the order of magnitude of aerosol number concentration. The results show the southward migration of minimum concentrations, which follows ITCZ (Inter Tropical Convergence Zone) migration. Sulphate surface concentration during INDOEX-IFP at Kaashidhoo (73.46 degrees E, 4.96 degrees N) gives an agreement within a factor of 2 to 3. The measured aerosol optical depth (AOD) from all aerosol species at KCO was 0.37 +/- 0.11 while the model simulated sulphate AOD ranged from 0.05 to 0.11. As sulphate constitutes 29% of the observed AOD, the model predicted values of sulphate AOD are hence fairly close to the measured values. The model thus has capability to predict the vertically integrated column sulphate burden. Furthermore, the model results indicate that Indian contribution to the estimated sulphate burden over India is more than 60% with values upto 40% over the Arabian Sea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available