4.5 Article

Monitoring near-surface depth profile of residual stress in weakly anisotropic media by Rayleigh-wave dispersion

Journal

WAVE MOTION
Volume 77, Issue -, Pages 119-138

Publisher

ELSEVIER
DOI: 10.1016/j.wavemoti.2017.10.008

Keywords

Rayleigh waves; Ultrasonic dispersion; Stress measurement; Acoustoelasticity; Textured media; Surface conditioning

Funding

  1. JSPS KAKENHI Grant [JP26400157]
  2. U.S. Army Research Laboratory [W911QX-16-D-0014]
  3. Grants-in-Aid for Scientific Research [26400157] Funding Source: KAKEN

Ask authors/readers for more resources

Herein we study the inverse problem on inferring depth profile of near-surface residual stress in a weakly anisotropic medium by boundary measurement of Rayleigh-wave dispersion if all other relevant material parameters of the elastic medium are known. Our solution of this inverse problem is based on a recently developed algorithm by which each term of a high-frequency asymptotic formula for dispersion relations can be computed for Rayleigh waves that propagate in various directions along the free surface of a vertically-inhomogeneous, prestressed, and weakly anisotropic half-space. As a prime example of possible applications we focus on a thick-plate sample of AA 7075-T651 aluminum alloy, which has one face treated by low plasticity burnishing (LPB) that induced a depth dependent prestress at and immediately beneath the treated surface. We model the sample as a prestressed, weakly-textured orthorhombic aggregate of cubic crystallites and assume that by nondestructive and/or destructive measurements we have ascertained everything about the sample, including the LPB-induced prestress, before it is put into service. Under the supposition that the prestress be partially relaxed but other material parameters remain unchanged after the sample undergoes a period of service, we examine the possibility of inferring the depth profile of the partially relaxed stress by boundary measurement of Rayleigh-wave dispersion. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available