4.5 Article

Diurnal variations of the energy intensity and associated greenhouse gas emissions for activated sludge processes

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 77, Issue 7, Pages 1838-1850

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2018.054

Keywords

activated sludge; aeration; amplification; carbon emissions; energy tariff; time of use

Funding

  1. City of Los Angeles Bureau of Sanitation

Ask authors/readers for more resources

A model was developed for a water resources recovery facility (WRRF) activated sludge process (ASP) in Modified Ludzack-Ettinger (MLE) configuration. Amplification of air requirements and its associated energy consumptions were observed as a result of concurrent circadian variations in ASP influent flow and carbonaceous/nitrogenous constituent concentrations. The indirect carbon emissions associated with the ASP aeration were further amplified due to the simultaneous variations in carbon emissions intensity (kgCO(2,eq) (kWh)(-1)) and electricity consumption (kWh). The ratio of peak to minimum increased to 3.4 (for flow), 4.2 (for air flow and energy consumption), and 5.2 (for indirect CO2,eq emission), which is indicative of strong amplification. Similarly, the energy costs for ASP aeration were further increased due to the concurrency of peak energy consumptions and power demands with time of use peak electricity rates. A comparison between the results of the equilibrium model and observed data from the benchmark WRRF demonstrated under- and over-aeration attributed to the circadian variation in air requirements and limitations associated with the aeration system specification and design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available