4.7 Article

Direct Channel Precipitation and Storm Characteristics Influence Short-Term Fallout Radionuclide Assessment of Sediment Source

Journal

WATER RESOURCES RESEARCH
Volume 54, Issue 7, Pages 4579-4594

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2017WR021684

Keywords

suspended sediment; Beryllium-7; Lead-210; channel interception; extreme event

Funding

  1. National Science Foundation [EAR 1144760, EAR 1424147]
  2. Christina River Basin Critical Zone Observatory [NSF EAR 1331856]

Ask authors/readers for more resources

Fallout radionuclides (FRNs) and their ratios, such as Beryllium-7 (Be-7) and excess Lead-210 (Pb-210(xs)), have been used to determine suspended sediment source and age in catchments. These models are based on numerous assumptions, for example, that channel deposition of FRNs from precipitation is negligible in comparison to their delivery to the channel from land surface erosion during individual storm events. We test this assumption using a mass balance approach during eight storms from summer 2011 to fall 2012 in a mid-Atlantic United States piedmont region watershed with mixed land use. Event peak discharge and storm type corresponded to the importance of direct channel FRN deposition from precipitation. During relatively low discharge summer thunderstorms, with minimal overland flow, less than 1% of Be-7 and Pb-210(xs) flux deposited on the watershed exits the watershed associated with suspended sediment. The majority but not all deposited on the stream channel exits the watershed associated with suspended sediment (60% of Be-7 and 80% of Pb-210(xs)). Here precipitation and throughfall onto the wetted channel area can be responsible for any FRN newly associated with suspended sediment, as opposed to landscape surface erosion. Furthermore, FRNs can be stored with sediments in the channel between events. Events with higher discharges, including hurricanes, show the opposite pattern-FRN flux associated with suspended sediment exported from the reach is greater than channel FRN wet deposition, suggesting net erosion from the watershed landscape and/or stored material during these types of storms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available