4.8 Article

Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II)

Journal

WATER RESEARCH
Volume 128, Issue -, Pages 92-101

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2017.10.045

Keywords

Ferrihydrite; Catalytic oxidation; Mn(II) oxidation; As(III) oxidation; As(V) adsorption; Mn(III) intermediate

Funding

  1. National Natural Science Foundation of China (NSFC) [41471194, 41601228]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15020402]

Ask authors/readers for more resources

Arsenic is a carcinogenic element that exists primarily as arsenate [As(V)] and arsenite [As(III)] in the nature environment, with As(III) being more toxic and mobile of the two species. In addition, ferrihydrite, which is widely distributed in soils and aquatic environments, can catalyze the oxidation of Mn(II) and accelerate the formation of high-valence Mn, which can significantly influence the speciation, toxicity, and mobility of As when these species co-exist. In this context, we herein explored the mechanism of As(III) oxidation in the presence of ferrihydrite and Mn(II) using a kinetic approach combined with multiple spectroscopic techniques, including X-ray absorption near edge spectroscopy, in situ horizontal 'attenuated total-reflectance Fourier transform infrared spectroscopy, and in situ quick scanning X-ray absorption spectroscopy. Our results indicate that efficient As(III) oxidation by dissolved O-2 occurs on the surface of ferrihydrite in the presence of aqueous Mn(II). Compared with As(III) oxidation in the presence of ferrihydrite and Mn oxides (i.e., Mn oxides/hydroxides), the degree of As(III) oxidation in the ferrihydrite-Mn(II) system was significantly higher, and the majority of generated As(V) was adsorbed on the mineral (i.e., ferrihydrite) surface. Furthermore, As(III) oxidation was enhanced upon increasing both the molar ratio of Mn(II)/As(III) and the solution pH. The greater As(III) oxidation by O-2 in the ferrihydrite-Mn(II) system was mainly attributed to the formation of a strong oxidant of the instantaneous intermediate Mn(III) species via Mn(II) oxidation under catalysis by the ferrihydrite surface. Moreover, As(III) oxidation occurred mainly on the ferrihydrite surface and was accompanied by the regeneration of Mn(II), thereby rendering it recyclable. These results therefore provide new insights into the mechanism of As(III) oxidation on the surfaces of Fe oxides (i.e., Fe oxides/hydroxides) in the presence of aqueous Mn(II) as well as the new details regarding the electron transfer mechanisms between the As(III)-Mn(II, III)-O-2 species at the ferrihydrite surface, and could lead to novel approaches for As(III) contaminant remediation in the environment. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available