4.8 Article

Transformation of microcystin-LR and olefinic compounds by ferrate(VI): Oxidative cleavage of olefinic double bonds as the primary reaction pathway

Journal

WATER RESEARCH
Volume 141, Issue -, Pages 268-278

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2018.05.009

Keywords

Ferrate(VI); Algal toxin; Microcystin-LR; Olefin; Sorbic acid; Cinnamic acid

Funding

  1. GIST Research Institute (GRI) grant - GIST in 2018
  2. Korea Research Fellowship through National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [NRF-2016H1D3A1938096]

Ask authors/readers for more resources

The presence of toxic microcystins in algal-impacted surface waters is a concern for drinking water quality management. In this study, the potential of ferrate(VI) to eliminate microcystins during drinking water treatment was assessed by investigating reaction kinetics, reaction sites, transformation products, and toxicity changes for the oxidation of microcystin-LR (MC-LR) as a representative microsystin. The investigations also included several substructural model compounds of MC-LR, such as cinnamic acid and sorbic acid, to elucidate the major transformation products and pathways of MC-LR and olefinic compounds. Second-order rate constants were determined in the pH range 6-10.4 for the reaction of ferrate(VI) with MC-LR and the model compounds. The kinetic data revealed that the olefinic double bonds in the Adda and Mdha residues of MC-LR were the primary ferrate(VI) reaction sites, while the phenyl or guanidine moiety was not the reaction site. This finding was supported by detection and identification of the MC-LR transformation products of double bond cleavage, with high peak abundance in the liquid chromatography-mass spectrometry. Furthermore, the reaction of ferrate(VI) with cinnamic and sorbic acids formed the corresponding aldehydes and organic acids with near complete carbon mass balance, indicating the oxidative cleavage of the double bonds as the primary reaction pathway. A quantitative protein phosphatase 2A (PP2A) binding assay for ferrate(VI)-treated MC-LR solutions showed that the MC-LR transformation products exhibited negligible PP2A binding activity compared to that of the parent MC-LR. Oxidation experiments in a filtered river water matrix spiked with MC-LR demonstrated the efficient elimination of MC-LR during water treatment with ferrate(Vl). (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available