4.5 Review

Non-coding RNAs in lipid metabolism

Journal

VASCULAR PHARMACOLOGY
Volume 114, Issue -, Pages 93-102

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.vph.2018.06.011

Keywords

miRNAs; lncRNAs; Cholesterol metabolism; Cardiovascular disease; Atherosclerosis

Funding

  1. NIH [R35HL135820]
  2. Foundation Leducq Transatlantic Network of Excellence in Cardiovascular Research
  3. AHA Established Investigator Award [16EIA27550004]

Ask authors/readers for more resources

Cardiovascular disease (CVD), the leading cause of death and morbidity in the Western world, begins with lipid accumulation in the arterial wall, which is the initial step in atherogenesis. Alterations in lipid metabolism result in increased risk of cardiometabolic disorders, and treatment of lipid disorders remains the most common strategy aimed at reducing the incidence of CVD. Work done over the past decade has identified numerous classes of non-coding RNA molecules including microRNAs (miRNAs) and long-non-coding RNAs (lncRNAs) as critical regulators of gene expression involved in lipid metabolism and CVD, mostly acting at post-transcriptional level. A number of miRNAs, including miR-33, miR-122 and miR-148a, have been demonstrated to play important role in controlling the risk of CVD through regulation of cholesterol homeostasis and lipoprotein metabolism. lncRNAs are recently emerging as important regulators of lipid and lipoprotein metabolism. However, much additional work will be required to fully understand the impact of lncRNAs on CVD and lipid metabolism, due to the high abundance of lncRNAs and the poor-genetic conservation between species. This article reviews the role of miRNAs and lncRNAs in lipid and lipoprotein metabolism and their potential implications for the treatment of CVD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available