4.4 Article

Xenobiotic Metabolism and Disposition in Human Lung Cell Models: Comparison with In Vivo Expression Profiles

Journal

DRUG METABOLISM AND DISPOSITION
Volume 40, Issue 10, Pages 1953-1965

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.112.046896

Keywords

-

Funding

  1. Institut de Recherche en Environnement Industriel
  2. Universite de Lille 2
  3. Conseil Regional du Nord-Pas-de-Calais

Ask authors/readers for more resources

Numerous lung cell lines are currently used as in vitro models for pharmacological and toxicological studies. However, no exhaustive report about the metabolic capacities of these models in comparison with those of lung tissues is available. In the present study, we used a high-throughput quantitative real-time reverse transcription-polymerase chain reaction strategy to characterize the expression profiles of 380 genes encoding proteins involved in the metabolism and disposition of xenobiotics in 10 commonly used lung cell lines (A549, H292, H358, H460, H727, Calu-1, 16HBE, 1 HAEO, BEAS-2B, and L-132) and four primary cultures of human bronchial epithelial cells. Expression results were then compared with those previously obtained in human nontumoral and tumoral lung tissues. Our results revealed disparities in gene expression between lung cell lines or when comparing lung cell lines with primary cells or lung tissues. Primary cell cultures displayed the highest similarities with bronchial mucosa in terms of transcript profiling and therefore seem to be the most relevant in vitro model for investigating the metabolism and bioactivation of toxicants and drugs in bronchial epithelium. H292 and BEAS-2B cell lines, which exhibited the highest homology in gene expression pattern with primary cells and the lowest number of dysregulated genes compared with nontumoral lung tissues, could be used as surrogates for toxicological and pharmacological studies. Overall, our study should provide references for researchers to choose the most appropriate in vitro model for analyzing the cellular effects of drugs or airborne toxicants on the airway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available