4.7 Article

Optimization of ultrasound-assisted extraction of biomass from olive trees using response surface methodology

Journal

ULTRASONICS SONOCHEMISTRY
Volume 51, Issue -, Pages 487-495

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2018.05.031

Keywords

Extraction from biomass; Olive tree pruning biomass; Olive mill leaves; Antioxidant activity; Biorefinery

Funding

  1. Spanish Ministry of Economy and Competitiviness [ENE2014-60090-C2-2-R]
  2. University of Jaen Doctoral School
  3. Spanish Ministry of Economy and Competitiveness [IJCI-2015-25305]

Ask authors/readers for more resources

Olive tree pruning biomass (OTP) and olive mill leaves (OML) are the main residual lignocellulosic biomasses that are generated from olive trees. They have been proposed as a source of value-added compounds and biofuels within the biorefinery concept. In this work, the optimization of an ultrasound-assisted extraction (UAE) process was performed to extract antioxidant compounds present in OTP and OML. The effect of the three parameters, ethanol/water ratio (20, 50, 80% of ethanol concentration), amplitude percentage (30, 50, 70%) and ultrasonication time (5, 10, 15 min), on the responses of total phenolic content (TPC), total fiavonoid content (TFC) and antioxidant activities (DPPH, ABTS and FRAP) were evaluated following a Box-Behnken experimental design. The optimal conditions obtained from the model, taking into account simultaneously the five responses, were quite similar for OW and OML, with 70% amplitude and 15 min for both biomasses and a slight difference in the optimum concentration of ethanol. (54.5% versus 51.3% for OTP and OML, respectively). When comparing the antioxidant activities obtained with OTP and OML, higher values were obtained for OML (around 40% more than for OTP). The antioxidant activities reached experimentally under the optimized conditions were 31.6 mg of TE/g of OW and 42.5 mg of TE/g of OML with the DPPH method, 66.5 mg of TE/g of OTP and 95.9 mg of TE/g of OML with the ARTS method, and 36.4 mg of TE/g of OTP and 49.7 mg of TE/g of OML with the FRAP method. Both OTP and OML could be a potential source of natural antioxidants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available