4.7 Article

High-frequency ultrasonic methods for determining corrosion layer thickness of hollow metallic components

Journal

ULTRASONICS
Volume 89, Issue -, Pages 166-172

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2018.05.006

Keywords

Non-destructive test; Internal corrosion; Laser-ultrasonic; Piezoelectric pulse-echo; Ultrasonic wave

Funding

  1. Aerospace Program of A*STAR, Singapore [IMRE/14-2P1114]
  2. A*STAR Science and Engineering Research Council (SERC) [1421500068]

Ask authors/readers for more resources

Corrosion in internal cavity is one of the most common problems occurs in many hollow metallic components, such as pipes containing corrosive fluids and high temperature turbines in aircraft. It is highly demanded to non-destructively detect the corrosion inside hollow components and determine the corrosion extent from the external side. In this work, we present two high-frequency ultrasonic non-destructive testing (NDT) technologies, including piezoelectric pulse-echo and laser-ultrasonic methods, for detecting corrosion of Ni superalloy from the opposite side. The determination of corrosion layer thickness below similar to 100 mu m has been demonstrated by both methods, in comparison with X-CT and SEM. With electron microscopic examination, it is found that with multilayer corrosion structure formed over a prolonged corrosion time, the ultrasonic NDT methods can only reliably reveal outer corrosion layer thickness because of the resulting acoustic contrast among the multiple layers due to their respective different mechanical parameters. A time-frequency signal analysis algorithm is employed to effectively enhance the high frequency ultrasonic signal contrast for the piezoelectric pulse-echo method. Finally, a blind test on a Ni superalloy turbine blade with internal corrosion is conducted with the high frequency piezoelectric pulser-receiver method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available