4.2 Article

Transplantation of Amniotic Scaffold-Seeded Mesenchymal Stem Cells and/or Endothelial Progenitor Cells From Bone Marrow to Efficiently Repair 3-cm Circumferential Urethral Defect in Model Dogs

Journal

TISSUE ENGINEERING PART A
Volume 24, Issue 1-2, Pages 47-56

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2016.0518

Keywords

circumferential urethral defect; bone marrow mesenchymal stem cells; endothelial progenitor cells; amniotic membrane scaffold; dogs

Funding

  1. National Natural Science Foundation of China

Ask authors/readers for more resources

The treatment options for patients with a urethral defect are limited by the availability of autologous tissues. We hypothesized that transplantation of decellularized human amniotic scaffolds (dHAS) seeded with allogeneic bone marrow mesenchymal cells (BMSCs) and/or endothelial progenitor cells (EPCs) may serve as a promising repair strategy for long segment of circumferential urethral defect. To verify the hypothesis, with urinary catheterization, a 3-cm segment of whole urethra in 25 male mongrel dogs was excised and replaced by dHAS seeded with allogeneic BMSCs and/or EPCs. Postoperative observation and ascending urethrogram found that dHAS+BMSCs+EPCs and dHAS+EPCs groups demonstrated unhindered urination and capacious urethral caliber, which were similar to the normal group, while urethrostenosis was revealed in dHAS+BMSCs, dHAS, and sham-operated groups, with the shortest narrow section in dHAS+BMSCs group and the longest in sham-operated group. Urethral anatomy check and histological analyses showed that new urethral mucosa composed of stratified columnar epithelium completely covered on the inner surface of the graft site in dHAS+BMSCs+EPCs and dHAS+EPCs groups, but the middle epithelium was thin in dHAS+EPCs group, while incompletely covered in dHAS+BMSCs, dHAS, and sham-operated groups, and there were monolayer epithelial cells at the urethrostenosis in dHAS+BMSCs and dHAS groups. In addition, abundant new vessel and blood sinus showed at submucosa in dHAS+BMSCs+EPCs and dHAS+EPCs groups, instead of the scar tissue of collagen deposition and structural distortion at the urethrostenosis in dHAS+BMSCs, dHAS, and sham-operated groups. This study demonstrates that dHAS seeded with BMSCs+EPCs or EPCs can successfully repair a 3-cm circumferential urethral defect in model dogs, but the former works best. This technology may provide some references for human clinical trials on long segment of circumferential urethral defect repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available