4.3 Article

NUMERICAL INVESTIGATION OF COMBINED EFFECT OF NANOFLUIDS AND MULTIPLE IMPINGING JETS ON HEAT TRANSFER

Journal

THERMAL SCIENCE
Volume 23, Issue 5, Pages 3165-3173

Publisher

VINCA INST NUCLEAR SCI
DOI: 10.2298/TSCI171204094K

Keywords

heat transfer; nanofluid; volume ratio; impinging jet

Categories

Funding

  1. Adana Science and Technology University [16103021]

Ask authors/readers for more resources

The present study is focused on numerical investigation of heat enhancement and fluid-flow from a heated surface by using nanofluids with three impinging jets. Effects of different volume ratio, different heat flux and different types of nanofluids (CuO-water, Al2O3-water, Cu-water, TiO-water, and pure water) on heat transfer and fluid-flow were studied numerically. The CuO-water nanofluid was used as a coolant in the other parameter. Three impinging jets were used to cool the surface. Low Reynolds number k-epsilon turbulent model of PHONEICS CFD code was used for numerical analysis. It is obtained that increasing volume ratio from phi=2% to 8% causes an increase of 10.4% on average Nusselt number. Increasing heat flux six times has not a significant effect on average Nusselt number. Using Cu-water nanofluid causes an increase of 2.2%, 5.1%, 4.6%, and 9.6% on average Nusselt number with respect to CuO-water, TiO-water, Al2O3-water, and pure water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available