4.5 Article

Small biomolecule dopant retinals: Electron blocking layer in P3HT:PCBM type organic solar cells

Journal

SYNTHETIC METALS
Volume 236, Issue -, Pages 8-18

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.synthmet.2017.11.012

Keywords

Optoelectronic materials; Retinal; Photoisomerization; Electron blocking; Photovoltaic

Funding

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [113Z250]

Ask authors/readers for more resources

We present a comparative study of the photophysics and electron/hole properties of all-trans retinal-benzimidazole type molecules decorated with different electronic moieties (such as -OCH3, -N(CH3)(2), -F, -CF3) in organic photovoltaic (OPV) devices in solution end on solid thin films. Steady-state spectra of synthesized dyes give large Stokes shifts (6887-13152 cm(-1)) in studied solvents. Decay times of these dyes were found to be substituent dependent giving a bi-exponential decay for fluorine containing retinals. Trans to cis photo-isomerization rate constants of synthesized dyes were found to be about 3.3-16.4 x 10(-6) s(-1). Using a cyclic voltammetry measurements, HOMO and LUMO energy levels of fluorine-substituted dyes shift to lower values as compared to that of unfluorinated derivatives. We compared unusual electron blocking behavior of methoxy- and N,N-dimethylamino-substituted derivatives (Ret-I and Ret-II, respectively) in bulk heterojunction solar cells (BHJ-SCs) incorporating an active layer of P3HT:PCBM doped with Ret derivatives at various weight ratios. Hole mobility values for fluorine containing retinals were found to be about 1.0 x 10(-4) and 7.1 x 10(-4) cm(2)/V s for Retail and Ret-IV dyes, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available