4.8 Article

Constructing Highly Graphitized Carbon-Wrapped Li3VO4 Nanoparticles with Hierarchically Porous Structure as a Long Life and High Capacity Anode for Lithium-Ion Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 45, Pages 25084-25093

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b05269

Keywords

Li3VO4; anode materials; graphitized carbon; hierarchical pore; lithium-ion batteries

Funding

  1. National Natural Science Foundation of China [21471016, 21271023]
  2. 111 Project [B07012]

Ask authors/readers for more resources

Li3VO4 nanoparticles (NPs) embedded in a continuous, highly graphitized carbon network with an interconnected hierarchically porous structure (HP-Li3VO4/C) were prepared using a facile, green freeze-drying method followed by in situ carbonizing. Because of its unique microstructure, the resultant HP-Li3VO4/C exhibits excellent lithium storage performance in terms of specific capacity, cycling stability, and rate capability when used as an anode material in lithium-ion batteries (LIBs). Specifically, it delivers an extremely high capacity of 381 mAh g(-1) for up to 300 cycles at 0.2 A g(-1), and even at a rate as high as 4 A g(-1), a high reversible capacity of 275 mAh g(-1) can be retained after testing for 500 cycles. This excellent electrochemical performance can be attributed to Li3VO4 NPs wrapped with highly graphitized carbon conductive framework and hierarchically porous structure. This work may offer a new methodology for the preparation of other electrode materials for LIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available