4.7 Article

Global simulations of nitrate and ammonium aerosols and their radiative effects

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 12, Issue 20, Pages 9479-9504

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-12-9479-2012

Keywords

-

Funding

  1. DOE Atmospheric Science Research Program [DOE-DE-FG02-97-ER62370]
  2. DOE Climate Program [DOE-FG02-01-ER63248]

Ask authors/readers for more resources

We examine the formation of nitrate and ammonium on five types of externally mixed pre-existing aerosols using the hybrid dynamic method in a global chemistry transport model. The model developed here predicts a similar spatial pattern of total aerosol nitrate and ammonium to that of several pioneering studies, but separates the effects of nitrate and ammonium on pure sulfate, biomass burning, fossil fuel, dust and sea salt aerosols. Nitrate and ammonium boost the scattering efficiency of sulfate and organic matter but lower the extinction of sea salt particles since the hygroscopicity of a mixed nitrate-ammonium-sea salt particle is less than that of pure sea salt. The direct anthropogenic forcing of particulate nitrate and ammonium at the top of the atmosphere (TOA) is estimated to be -0.12 W m(-2). Nitrate, ammonium and nitric acid gas also affect aerosol activation and the reflectivity of clouds. The first aerosol indirect forcing by anthropogenic nitrate (gas plus aerosol) and ammonium is estimated to be -0.09 W m(-2) at the TOA, almost all of which is due to condensation of nitric acid gas onto growing droplets (-0.08 W m(-2)).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available