4.6 Article

Lightweight Lossy Compression of Biometric Patterns via Denoising Autoencoders

Journal

IEEE SIGNAL PROCESSING LETTERS
Volume 22, Issue 12, Pages 2304-2308

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LSP.2015.2476667

Keywords

Autoencoders; biometric patterns; lossy compression; wearable devices

Ask authors/readers for more resources

Wearable Internet of Things (IoT) devices permit the massive collection of biosignals (e.g., heart-rate, oxygen level, respiration, blood pressure, photo-plethysmographic signal, etc.) at low cost. These, can be used to help address the individual fitness needs of the users and could be exploited within personalized healthcare plans. In this letter, we are concerned with the design of lightweight and efficient algorithms for the lossy compression of these signals. In fact, we underline that compression is a key functionality to improve the lifetime of IoT devices, which are often energy constrained, allowing the optimization of their internal memory space and the efficient transmission of data over their wireless interface. To this end, we advocate the use of autoencoders as an efficient and computationally lightweight means to compress biometric signals. While the presented techniques can be used with any signal showing a certain degree of periodicity, in this letter we apply them to ECG traces, showing quantitative results in terms of compression ratio, reconstruction error and computational complexity. State of the art solutions are also compared with our approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available