4.7 Article

Characterization of medium-temperature phase change materials for solar thermal energy storage using temperature history method

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 179, Issue -, Pages 152-160

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2017.11.006

Keywords

Phase change material; Medium temperature; Thermal property; Temperature history method

Funding

  1. National Natural Science Foundation of China [U1507201]
  2. Applied Science and Technology Projects of Guangdong Province [2016B020243008]

Ask authors/readers for more resources

In this work, thermal properties of five phase change materials (PCMs) with medium phase change temperature including mannitol, sebacic acid (SA), SA/expanded graphite (EG) composite, LiNO3-KCl eutectic salt and LiNO3-KCl/EG composite, were characterized using temperature history (T-history) method with improved accuracy. The studies on mannitol showed that although the T-history method could yield a supercooling degree which was lower than that from differential scanning calorimetry (DSC) determination, the severe supercooling and great latent heat loss during mannitol's solidification were still the problems which hindered the use of this material. As for the rest materials, slight or no supercooling phenomena were observed and the obtained phase change temperatures were well matched to literature data. The latent heat measurements of these four materials proved a proportional relationship between the PCM/EG composite's latent heat and PCM's mass fraction. However, the latent heat values determined by T-history were higher than the DSC results. Therefore, repeated studies were still required to further evaluate the latent heat storage densities of these materials. The results in this work could play key roles in design, simulation and modification of latent thermal energy storage (LTES) systems based on these medium-temperature PCMs for solar heat applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available