4.6 Article

Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data

Journal

SOLAR ENERGY
Volume 164, Issue -, Pages 339-354

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2018.02.059

Keywords

Solar radiation; Global horizontal irradiance; Reanalysis products; Satellite-based products

Categories

Funding

  1. FPI-UR - University of La Rioja
  2. FEDER-MINECO [UNLR-094E-2C-225]

Ask authors/readers for more resources

This study examines the progress made by two new reanalyses in the estimation of surface irradiance: ERAS, the new global reanalysis from the ECMWF, and COSMO-REA6, the regional reanalysis from the DWD for Europe. Daily global horizontal irradiance data were evaluated with 41 BSRN stations worldwide, 294 stations in Europe, and two satellite-derived products (NSRDB and SARAH). ERAS achieves a moderate positive bias worldwide and in Europe of + 4.05 W/m 2 and + 4.54 W/m 2 respectively, which entails a reduction in the average bias ranging from 50% to 75% compared to ERA-Interim and MERRA-2. This makes ERAS comparable with satellite-derived products in terms of the mean bias in most inland stations, but ERAS results degrade in coastal areas and mountains. The bias of ERAS varies with the cloudiness, overestimating under cloudy conditions and slightly underestimating under clear-skies, which suggests a poor prediction of cloud patterns and leads to larger absolute errors than that of satellite-based products. In Europe, the regional COSMO-REA6 underestimates in most stations (MBE = -5.29 W/m(2)) showing the largest deviations under clear-sky conditions, which is most likely caused by the aerosol climatology used. Above 45 degrees N the magnitude of the bias and absolute error of COSMO-REA6 are similar to ERAS while it outperforms ERA5 in the coastal areas due to its high-resolution grid (6.2 km). We conclude that ERAS and COSMO-REA6 have reduced the gap between reanalysis and satellite-based data, but further development is required in the prediction of clouds while the spatial grid of ERAS (31 km) remains inadequate for places with high variability of surface irradiance (coasts and mountains). Satellite-based data should be still used when available, but having in mind their limitations, ERAS is a valid alternative for situations in which satellite-based data are missing (polar regions and gaps in times series) while COSMO-REA6 complements ERA5 in Central and Northern Europe mitigating the limitations of ERA5 in coastal areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available