4.6 Article

Structure and rheology of polyelectrolyte complex coacervates

Journal

SOFT MATTER
Volume 14, Issue 13, Pages 2454-2464

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sm02041d

Keywords

-

Funding

  1. U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD) [70NANB14H012]
  2. DOE Office of Science [DE-AC02-06CH11357]

Ask authors/readers for more resources

Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality. Systematic studies using small-angle X-ray scattering (SAXS) of liquid PEC coacervates revealed a physical description of these materials as strongly screened semidilute polyelectrolyte solutions comprising oppositely charged chains. At the same time, solid PECs were found to be composed of hydrogen-bonding driven stiff ladder-like structures. While the coacervates behaved akin to semidilute polyelectrolyte solutions upon addition of salt, the solids were largely unaffected by it. Rheology measurements of PEC coacervates revealed a terminal relaxation regime, with an unusual plateauing of the storage modulus at low oscillation frequencies. The plateau may be ascribed to a combination of instrumental limitations and the long-range electrostatic interactions contributing to weak energy storage modes. Excellent superposition of the dynamic moduli was achieved by a time-salt superposition. The shift factors, however, varied more strongly than previously reported with added salt concentration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available