4.6 Article

Tough high modulus hydrogels derived from carbon-nitride via an ethylene glycol co-solvent route

Journal

SOFT MATTER
Volume 14, Issue 14, Pages 2655-2664

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sm00232k

Keywords

-

Funding

  1. Max Planck Society

Ask authors/readers for more resources

High concentration formulations of graphitic carbon nitride (g-CN) are utilized as photoinitiator and reinforcer for hydrogels. In order to integrate significant amounts of g-CN, ethylene glycol (EG) is employed as a co-solvent for the gel formation, which enables stable dispersion of up to 4 wt% g-CN. Afterwards, EG can be removed easily via solvent exchange to afford pure hydrogels. The diverse gels possess remarkably high storage moduli (up to 650 kPa for gels and 720 kPa for hydrogels) and compression moduli (up to 9.45 MPa for 4 wt% g-CN EG gel and 3.45 MPa for 4 wt% g-CN hydrogel). Full recovery without energy loss is observed for at least 20 cycles. Moreover, gel formation can be performed in a spatially controlled way utilizing photomasks with desired shapes. Therefore, the suggested method enables formation of hybrid gels by optical lithography with outstanding mechanical properties very similar to natural cartilage and tendon, and opens up opportunities for future applications in photocatalysis, additive manufacturing of biomedical implants and coating materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available