4.8 Article

Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor.

Journal

SMALL
Volume 14, Issue 13, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201703934

Keywords

breath analysis; catalysts; humidity sensors; graphene fibers; nitrogen doping

Funding

  1. Wearable Platform Materials Technology Center (WMC) - National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP) [2016R1A5A1009926]
  2. NanoMaterial Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2016M3A7B4905609, 2016M3A7B4905619]

Ask authors/readers for more resources

Humidity sensors are essential components in wearable electronics for monitoring of environmental condition and physical state. In this work, a unique humidity sensing layer composed of nitrogen-doped reduced graphene oxide (nRGO) fiber on colorless polyimide film is proposed. Ultralong graphene oxide (GO) fibers are synthesized by solution assembly of large GO sheets assisted by lyotropic liquid crystal behavior. Chemical modification by nitrogen-doping is carried out under thermal annealing in H-2(4%)/N-2(96%) ambient to obtain highly conductive nRGO fiber. Very small (approximate to 2 nm) Pt nanoparticles are tightly anchored on the surface of the nRGO fiber as water dissociation catalysts by an optical sintering process. As a result, nRGO fiber can effectively detect wide humidity levels in the range of 6.1-66.4% relative humidity (RH). Furthermore, a 1.36-fold higher sensitivity (4.51%) at 66.4% RH is achieved using a Pt functionalized nRGO fiber (i.e., Pt-nRGO fiber) compared with the sensitivity (3.53% at 66.4% RH) of pure nRGO fiber. Real-time and portable humidity sensing characteristics are successfully demonstrated toward exhaled breath using Pt-nRGO fiber integrated on a portable sensing module. The Pt-nRGO fiber with high sensitivity and wide range of humidity detection levels offers a new sensing platform for wearable humidity sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available