4.8 Article

Formation of Uniform Water Microdroplets on Wrinkled Graphene for Ultrafast Humidity Sensing

Journal

SMALL
Volume 14, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201703848

Keywords

graphene; humidity sensors; microdroplets; respiration; wrinkles

Funding

  1. National Natural Science Foundation of China [51672150]
  2. Beijing Natural Science Foundation [2172027]

Ask authors/readers for more resources

Portable humidity sensors with ultrafast responses fabricated in wearable devices have promising application prospects in disease diagnostics, health status monitoring, and personal healthcare data collecting. However, prolonged exposures to high-humidity environments usually cause device degradation or failure due to excessive water adsorbed on the sensor surface. In the present work, a graphene film based humidity sensor with a hydrophobic surface and uniformly distributed ring-like wrinkles is designed and fabricated that exhibits excellent performance in breath sensing. The wrinkled morphology of the graphene sensor is able to effectively prevent the aggregation of water microdroplets and thus maximize the evaporation rate. The as-fabricated sensor responds to and recovers from humidity in 12.5 ms, the fastest response of humidity sensors reported so far, yet in a very stable manner. The sensor is fabricated into a mask and successfully applied to monitoring sudden changes in respiratory rate and depth, such as breathing disorder or arrest, as well as subtle changes in humidity level caused by talking, cough and skin evaporation. The sensor can potentially enable long-term daily monitoring of breath and skin evaporation with its ultrafast response and high sensitivity, as well as excellent stability in high-humidity environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available