4.7 Article

Novel solvents based on thiocyanate ionic liquids doped with copper(I) with enhanced equilibrium selectivity for carbon monoxide separation from light gases

Journal

SEPARATION AND PURIFICATION TECHNOLOGY
Volume 196, Issue -, Pages 47-56

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2017.06.069

Keywords

Carbon monoxide; Ionic liquids; Gas separation; Reactive absorption; 1-Ethyl-3-methylimidazolium thiocyanate; Copper(1) thiocyanate

Funding

  1. Spanish Ministry of Economy and Competitiveness [CTQ2015-66078]
  2. Fundacion lberdrola Edpatia

Ask authors/readers for more resources

This work focuses on the research of novel carbon monoxide (CO) capture solvents to be applied to the separation of CO from other light components contained in gas streams of the process industry, e.g., nitrogen and hydrogen. More specifically, we examine the use of CO-selective capture solutions composed of the ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([C(2)mim][SCN]) and the transition metal salt copper(I) thiocyanate (CuSCN) as greener alternatives to the tetrachloroaluminate(III)-aromatic hydrocarbon solutions currently employed for CO separation from gas mixtures. In order to gain insight into the behavior of the selected ionic liquid solutions as chemical solvents for CO, their density and viscosity are characterized with respect to temperature and composition in a wide range of temperatures (273.15-303.15 K), pressures (up to 24 bar) and copper(I) concentrations (0-30 mol%). Moreover, the CO absorption has been assessed and gas-liquid equilibria are successfully described with a thermodynamic model as a function of those variables. The [C(2)min](x)[Cu](1-x)[SCN] solutions exhibit favorable properties in terms of competitive CO sorption capacity and high selectivity towards slightly soluble gases, e.g., 996.1 mmol L-1 and CO/N-2 selectivity of similar to 25 at 283.15 K and 23.3 bar, combined with low heat of absorption (-29.5 kJ mol(-1)) as well as easiness of regeneration and reuse. Consequently, these copper (I)-containing ionic liquids are promising for the development of novel and greener CO/N2 separation processes alternative to the use of flammable and toxic solvents or energy-intensive cryogenic distillations. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available