4.7 Article

A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 261, Issue -, Pages 587-597

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2017.12.022

Keywords

Flexible; Ammonia sensor; PANT-CeO2 nanocomposite thin film; In-situ self-assembly

Funding

  1. National Science Funds for Creative Research Groups of China [61421002]
  2. National Natural Science Foundation of China [61671115]

Ask authors/readers for more resources

A resistive-type flexible ammonia (NH3) sensor was proposed and developed in this work, which was prepared by depositing polyaniline-cerium dioxide (PANI-CeO2) nanocomposite thin film on flexible polyimide (PI) substrate through in-situ self-assembly method. The effect of CeO2 nanoparticles on the polymerization of aniline was studied by comparing the morphological, structural and chemical features of the pure PANI and PANI-CeO2 nanocomposite, and the dynamic polymerization processes were also recorded and investigated. In this process, an interesting phenomenon was found that the protonation and oxidation degrees of PANI in PANI-CeO2 nanocomposite were improved significantly according to the XPS spectra analysis, which should be ascribed to the synergetic oxidation of CeO2 nanoparticles and ammonium persulfate (APS). Meanwhile, the NH3-sensing performances of the pure PANI and PANI-CeO2 film sensors were evaluated at room temperature (similar to 25 degrees C), which showed that the PANI-CeO2 film sensor possessed enhanced response, reduced recovery time, perfect response-concentration linearity, good reproducibility, splendid selectivity, remarkable long-term stability, ultra-low detectable concentration (16 ppb) and theoretical detection limit (0.274 ppb), and outstanding flexibility without significant response decrease after 500 bending/extending cycles. It was speculated that the excellent sensing performances should probably benefit from the gas-sensing enhancement effect of p-n junction, the improved protonation degree and modified morphology of PANI by the addiction of CeO2 nanoparticles. And, the high flexibility might originate from the flexible structure of PANI chains, and the good adhesion and nano-mechanical performance of PANI-CeO2 film. Besides, the effect of relative humidity on the sensing properties of PANI-CeO2 film sensor was also discussed and analyzed. Therefore, the proposed high-performance flexible PANI-CeO2 thin film sensor holds great promise for application into hand-held or wearable electronic devices for trace-level NH3 detection at room temperature. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available