4.7 Article

A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 615, Issue -, Pages 208-218

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.09.226

Keywords

Bee health; Monitoring; Multiple residues; Chemical mixture; Chlorpyrifos; Imidacloprid

Funding

  1. MiPaaF [D.M. 10197]

Ask authors/readers for more resources

Honey bee (Apis mellifera L.) health is compromised by complex interactions between multiple stressors, among which pesticides play a major role. To better understand the extent of honey bee colonies' exposure to pesticides in time and space, we conducted a survey by collecting corbicular pollen from returning honey bee foragers in 53 Italian apiaries during the active beekeeping season of 3 subsequent years (2012-2014). Of 554 pollen samples analysed for pesticide residues, 62% contained at least one pesticide. The overall rate of multiresidual samples (38%) was higher than the rate of single pesticide samples (24%), reaching a maximum of 7 pesticides per sample (1%). Over 3 years, 18 different pesticides were detected (10 fungicides and 8 insecticides) out of 66 analysed. Pesticide concentrations reached the level of concern for bee health (Hazard Quotient (HQ) higher than 1000) at least once in 13% of the apiaries and exceeded the thresholds of safety for human dietary intake (Acute Reference Dose (ARfD), the Acceptable Daily Intake (ADI), and the Maximum Residue Limit (MRL)) in 39% of the analysis. The pesticide which was most frequently detected was the insecticide chlorpyrifos (30% of the samples overall, exceeding ARfD, ADI, or MRL in 99% of the positive ones), followed by the fungicides mandipropamid (19%), metalaxyl (16%), spiroxamine (15%), and the neonicotinoid insecticide imidacloprid (12%). Imidacloprid had also the highest HQ level (5054, with 12% of its positive samples with HQ higher than 1000). This 3 year survey provides further insights on the contamination caused by agricultural pesticide use on honey bee colonies. Bee-collected pollen is shown to be a valuable tool for environmental monitoring, and for the detection of illegal uses of pesticides. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available