4.7 Article

Assessment of possible solid-phase phosphate sorbents to mitigate eutrophication: Influence of pH and anoxia

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 619, Issue -, Pages 1431-1440

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.11.198

Keywords

Phosphate adsorption; Geo-engineering; Phosphorus control

Funding

  1. SWB/CNPq [201328/2014-3]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasil, through a Science Without Borders Grant, SWB under the flag of CAPES (Brazil)/NUFFIC (The Netherlands) [400408/2014-7, 045/12]

Ask authors/readers for more resources

Managing eutrophication remains a challenge towater managers. Currently, the manipulation of biogeochemical processes (i.e., geo-engineering) by using phosphorus-adsorptive techniques has been recognized as an appropriate tool to manage the problem. The first step in finding potential mitigating materials is conducting a sequence of upscaling studies that commence with controlled laboratory experiments. Here, the abilities of 10 possible solid-phase-sorbents (SPS) to adsorb P were examined. Four materials adsorbed P, and two of these materials were modified, i.e., a lanthanum-modified-bentonite (LMB) and an aluminum-modified-zeolite (AMZ), and had the highest adsorption capacities of 11.4 and 8.9 mg P g(-1), respectively. Two natural materials, a red soil (RS) and a bauxite (BAU), were less efficient with adsorption capacities of 2.9 and 3.4 mg P g(-1), respectively. Elemental composition was not related to P adsorption. Since SPS might be affected by pH and redox status, wealso tested these materials at pH values of 6, 7, 8 and 9 and under anoxic condition. All tested materials experienced decreased adsorption capacities under anoxic condition, with maximum adsorptions of 5.3 mg P g-1 for LMB, 5.9 mg P g(-1) for AMZ, 0.2 mg P g(-1) for RS and 0.2 mg P g(-1) for BAU. All materials were able to adsorb P across the range of pH values that were tested. The maximum adsorption capacities of LMB and RS were highest at pH 6, AMZwas higher at a pH of 9 and BAU at a pH of 8. Thus, pH influenced P adsorption differently. Given the effects of pH and anoxia, other abiotic variables should also be considered. Considering the criteria that classify a useful SPS (i.e., effective, easy to produce, cheap and safe), only the two modified materials that were tested seem to be suitable for upscaling to enclosure studies with anoxic sediments. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available