4.7 Article

Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 625, Issue -, Pages 782-791

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.12.309

Keywords

Freeze-thaw cycles; Methane; Illumina MiSeq; qPCR; 16S rRNA gene; mcrA

Funding

  1. National Key Research and Development Project [2016YFA0602303]
  2. Key Research Program of Frontier Sciences, CAS [QYZDJ-SSW-DQC013]
  3. National Natural Science Foundation of China [41730643, 41671105]

Ask authors/readers for more resources

Diurnal freeze-thaw cycles (FTCs) occur in the spring and autumn in boreal wetlands as soil temperatures rise above freezing during the day and fall belowfreezing at night. A surge inmethane emissions fromthese systems is frequently documented during spring FTCs, accounting for a large portion of annual emissions. In boreal wetlands, methane is produced as a result of syntrophicmicrobial processes, mediated by a consortiumof fermenting bacteria and methanogenic archaea. Further research is needed to determine whether FTCs enhance microbial metabolism related tomethane production through the cryogenic decomposition of soil organicmatter. Previous studies observed large methane emissions during the spring thawed period in the Sanjiang seasonal frozen marsh of Northeast China. To investigate how FTCs impact the soilmicrobial community and methanogen abundance and activity, we collected soil cores from the Sanjiang marsh during the FTCs of autumn 2014 and spring 2015. Methanogens were investigated based on expression level of themethyl coenzyme reductase (mcrA) gene, and soil bacterial and archaeal community structures were assessed by 16S rRNA gene sequencing. The results show that a decrease in bacteria and methanogens followed autumns FTCs, whereas an increase in bacteria and methanogens was observed following spring FTCs. The bacterial community structure, including Firmicutes and certain Deltaproteobacteria, was changed following autumn FTCs. Temperature and substrate were the primary factors regulating the abundance and composition of the microbial communities during autumn FTCs, whereas no factors significantly contributing to spring FTCs were identified. Acetoclastic methanogens from order Methanosarcinales were the dominant group at the beginning and end of both the autumn and spring FTCs. Active methanogens were significantly more abundant during the diurnal thawed period, indicating that the increasing number of FTCs predicted to occur with global climate change could potentially promote CH4 emissions in seasonal frozen marshes. (c) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available