4.7 Article

Biocides in the river system of a highly urbanized region: A systematic investigation involving runoff input

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 624, Issue -, Pages 1023-1030

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.12.225

Keywords

Biocides; Sources; Ecological risks; River system; Runoff

Funding

  1. National Water Pollution Control Program of China [20142ZX07206-005]
  2. National Science Foundation of China [NSFC 41473105, 01401235, 41303077]

Ask authors/readers for more resources

This study aimed to investigate the occurrence of 19 biocides in the aquatic environments (including runoffs) of a highly urbanized region, and then analyze the sources and ecological risks of target biocides in the river system. The investigated results showed that 19 target biocides were universally detected in surface water (17), sediment (19) and rainfall runoff (18). The tributaries of the river system were seriously contaminated by the biocides compared to the main stream. The prominent biocides in the riverine environment were methylparaben, climbazole and N.N-diethyl-3-methylbenzamide (DEET) for surface water, climbazole, triclosan and triclocarban for sediment, and DEET and carbendazim for rainfall runoff. The biocides source analysis based on the mass contribution suggested that domestic wastewater was a dominant input source for most biocides in the riverine environment, while rainfall runoff was another crucial input source for some biocides, especially for DEET and carbendazim. The ecological risk assessment revealed that some high levels biocides (e.g. clotrimazole, carbendazim, and triclosan) could pose potential ecological risks to aquatic organisms. Therefore, it is essential that some efficient measures should be taken to reduce the input of biocides to river system from different sources. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available