4.7 Article

Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 639, Issue -, Pages 1007-1014

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.05.241

Keywords

Iron cycling; Ferrous iron; Oxidation; Iron-reducing bacteria; Bio-availability

Funding

  1. National Natural Science Foundation of China [41672353, 41522208, 41521001]
  2. Applied Science and Technology Research and Development Project of Guangdong Province, China [201613020240008]

Ask authors/readers for more resources

The interplay of Fe(II) oxidation and Fe(III) bio-reduction occurs widely in both natural and engineered redox-dynamic systems. This study aimed to unravel the impact of Fe(II) oxidation by O-2 in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction. Mixed solutions of Fe2+ (0.1-0.5 mM) and Shewanella oneidensis strain MR-1 (MR-1, 2.0 x 10(7) CFU/mL) at neutral pH were first exposed to laboratory air for Fe(II) oxidation and bacterial inactivation, and then the resultant Fe(III) suspensions were switched to anoxic conditions for bio-reduction by the surviving bacteria. In the oxidation step, the coexisting MR-1 was inactivated by 0.8-1.71 orders of magnitude within 60 min. In the subsequent bio-reduction step, the resultant Fe(III) was bio-reduced by the surviving MR-1. Bio-reduction of the resultant Fe(III) by the surviving MR-1 was 1.8-2.5 times faster than that of the Fe(III) that was produced from Fe2+ oxidation without MR-1 by fresh MR-1 cells at 2.0 x 10(7) CFU/mL. Although MR-1 inactivation during Fe(II) oxidation may inhibit Fe(III) bio-reduction, the increase in bio-availability of the resultant Fe(III) and the residual reactivity of dead cells led to net enhancement of bio-reduction under the tested conditions. Lepidocrocite was the sole Fe(III) mineral that was produced from Fe2+ oxidation without MR-1, while 19% ferrihydrite was produced from Fe2+ oxidation in the presence of MR-1. The formation of low-crystallinity ferrihydrite accounts for the increase in bio-availability of the Fe(III) minerals. The findings of this study highlight an important but overlooked impact underlying the interplay of Fe(II) oxidation and Fe(III) bio-reduction. (c) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available