3.8 Proceedings Paper

Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.proenv.2012.01.087

Keywords

Landcover; Urbanization; Land surface temperature

Funding

  1. State Key Laboratory of Earth Surface Processes and Resource Ecology [2010DFA32920]
  2. Beijing Normal University

Ask authors/readers for more resources

Urbanization is a human-dominated process and has greatly impacted biodiversity, ecosystem processes, and regional climate. In this study we assess the effect of different degrees of urbanization on land surface temperature using remote sensing images. Landsat TM images were used for land surface temperature retrieval using the algorithm proposed by Artis and Carnahan. ALOS multispectral images were used for landcover classification using classification trees in three study areas, namely Xicheng district(A), Haidian district(B), Shijingshan district(C), of different degrees of urbanization in Beijing. Landcover-specific surface temperatures were estimated through an inversion alorithm. At the different degrees of urbanization, reducing the within-pixel coverage ratio of vegetations will result in an land surface temperature rise. Quantitative assessment of the relationship between different degrees of urbanization and land surface temperature was simulated by an urbanization index which integrates the coverage ratio of built-up landcover type and the cell-average NDVI. Urbanization indices of the Xicheng district, Haidian district, Shijingshan district were calculated to be 0.91, 0.72, and, 0.55 respectively. Such results are consistent with the trend of evaluation using quantitative estimation land surface temperature. (C) 2011 Published by Elsevier B. V. Selection and/or peer-review under responsibility of School of Environment, Beijing Normal University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available