4.7 Article

Effect of biochar particle size on hydrophobic organic compound sorption kinetics: Applicability of using representative size

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 619, Issue -, Pages 410-418

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.11.129

Keywords

Biochar; Sorption kinetics; Particle size; Intra-particle diffusion model; Hydrophobic organic compound

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2015R2C1A1A02036713]
  2. Geo-Advanced Innovative Action (GAIA) project of the Korea Environment Industry & Technology Institute

Ask authors/readers for more resources

Particle size of biochar may strongly affect the kinetics of hydrophobic organic compound (HOC) sorption. However, challenges exist in characterizing the effect of biochar particle size on the sorption kinetics because of the wide size range of biochar. The present study suggests a novel method to determine a representative value that can be used to show the dependence of HOC sorption kinetics to biochar particle size on the basis of an intra-particle diffusion model. Biochars derived from three different feedstocks are ground and sieved to obtain three daughter products each having different size distributions. Phenanthrene sorption kinetics to the biochars are well described by the intra-particle diffusion model with significantly greater sorption rates observed for finer grained biochars. The time to reach 95% of equilibrium for phenanthrene sorption to biochar is reduced from 4.6-17.9 days for the original biochars to <1-4.6 days for the powdered biochars with <125 mu m in size. A moderate linear correlation is found between the inverse square of the representative biochar particle radius obtained using particle size distribution analysis and the apparent phenanthrene sorption rates determined by the sorption kinetics experiments and normalized to account for the variation of the sorption rate-determining factors other than the biochar particle radius. The results suggest that the representative biochar particle radius reasonably describes the dependence of HOC sorption rates on biochar particle size. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available