4.8 Article

A self-assembled nanoscale robotic arm controlled by electric fields

Journal

SCIENCE
Volume 359, Issue 6373, Pages 296-300

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aao4284

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft through Collaborative Research Centre [SFB1032]
  2. Technical University Munich (TUM) through TUM International Graduate School of Science and Engineering
  3. Ludwig-Maximilians University through Center for NanoScience and the BioImaging Network

Ask authors/readers for more resources

The use of dynamic, self-assembled DNA nanostructures in the context of nanorobotics requires fast and reliable actuation mechanisms. We therefore created a 55-nanometer-by-55-nanometer DNA-based molecular platform with an integrated robotic arm of length 25 nanometers, which can be extended to more than 400 nanometers and actuated with externally applied electrical fields. Precise, computer-controlled switching of the arm between arbitrary positions on the platform can be achieved within milliseconds, as demonstrated with single-pair Forster resonance energy transfer experiments and fluorescence microscopy. The arm can be used for electrically driven transport of molecules or nanoparticles over tens of nanometers, which is useful for the control of photonic and plasmonic processes. Application of piconewton forces by the robot arm is demonstrated in force-induced DNA duplex melting experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available