4.7 Article

CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings

Journal

RENEWABLE ENERGY
Volume 118, Issue -, Pages 502-520

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2017.11.032

Keywords

Wind tower; Natural ventilation; Wind-driven ventilation; Indoor air quality (IAQ); Age of air; Ventilation efficiency

Funding

  1. Research Foundation - Flanders (FWO) [FWO 12M5316N]

Ask authors/readers for more resources

Cross-ventilation using rooftop wind-catchers is very complex as it is influenced by a wide range of interrelated factors including aerodynamic characteristics of the wind catcher, approach-flow conditions and building geometry. Earlier studies on wind-driven cross-ventilation in buildings have shown the significant impact of the geometry and position of openings on the flow and ventilation performance. However, this has not yet been investigated for cross-ventilation using wind catchers. This paper, therefore, presents a detailed evaluation of the impact of the outlet openings on the ventilation performance of a single-zone isolated building with a wind catcher. The evaluation is based on three ventilation performance indicators: (i) induced airflow rate, (ii) age of air, and (iii) air change efficiency. High-resolution coupled 3D steady RANS CFD simulations Of cross-ventilation are performed for different sizes and types of outlet openings. The CFD simulations are validated based on wind-tunnel measurements. The results show that using outlet openings very close to the wind catcher will not increase the induced airflow, while it leads to a considerable reduction in the indoor air quality. A combination of one-sided wind-catcher and window is superior, while the use of two-sided wind-catchers leads to the lowest indoor air quality and air change efficiency. (C) 2017 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available