4.7 Article

Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery

Journal

RENEWABLE ENERGY
Volume 117, Issue -, Pages 135-149

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2017.10.035

Keywords

Life cycle assessment (LCA); Eruca saliva; Biorefinery; Biodiesel; Greenhouse gas (GHG) mitigation; Human health

Funding

  1. Biofuel Research Team (BRTeam)
  2. University of Tehran
  3. Isfahan University of Technology, Agricultural Biotechnology Research Institute of Iran (ABRII)
  4. Iranian Biofuel Society (IBS)
  5. Tehran Waste Management Organization (Tehran Municipality)

Ask authors/readers for more resources

Renewable energy generation through biorefineries is increasingly considered as more sustainable in comparison with fossil-based fuels as well as single-product renewable energy systems. However, biorefineries have many system variations, and therefore, the evaluation of their environmental performance and comparison with conventional systems before large-scale deployment is essential. In this paper, the sustainability of three different biorefiney scenarios (Sc-1, Sc-2, and Sc-3) based on Eruca sativa (ES) as feedstock were investigated using a life cycle assessment approach from energy balance and environmental point of views. Biodiesel, electricity, ethanol, heat, glycerol, and/or biomethane were the marketable products taken into account under the conditions of these scenarios. According to the results obtained, we argue that although biorefineries offer unique features as most effective alternatives for mitigating climate change and reducing dependence on fossil fuels, the selection of biomass processing options and management decisions can widely affect the final evaluation results. Overall, providing transportation fuel through Sc-2 in which biodiesel, electricity, ethanol, heat, and glycerol were produced could decrease GHG emissions by approximately 140% compared with the combustion of neat diesel while also offering a total net energy gain (NEG) of 4.94E+08 MJ/yr. Nevertheless, if biorefineries are to be used for future transportation fuel production, a great deal of efforts should still be made to achieve better environmental performance in the Human Health and Ecosystem quality damage categories. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available