4.7 Article

On the multi-scale interactions between an offshore-wind-turbine wake and the ocean-sediment dynamics in an idealized framework - A numerical investigation

Journal

RENEWABLE ENERGY
Volume 115, Issue -, Pages 783-796

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2017.08.078

Keywords

Offshore-wind-turbine; Wake; Sea-sediment interactions; Ocean dynamics; Seabed dynamics

Funding

  1. Institut Carnot Energies du Futur
  2. Observatoire des Sciences de l'Univers de Grenoble (OSUG, LabEx OSUG@2020)
  3. Rhone-Alpes region [CPER07-13 CIRA]
  4. programme Investissements d'Avenir [ANR-10-EQPX-29-01]

Ask authors/readers for more resources

We investigate the turbulent dynamics of the coupled atmosphere-ocean-sediment system around a wind turbine. To this end, a coupled two-dimensional idealized numerical model of the ocean and sediment layers, forced by an idealized offshore wind turbine wake is used. The turbine wake impacts the ocean surface and for strong wind and water layer thickness higher than 20 m, large scale eddies of the size comparable to the wake thickness are generated, leading to a turbulent dynamics in the ocean. The turbulence in the ocean is controlled by the shallow wake parameter S. The turbulent ocean dynamics is numerically integrated using time dependent simulations at fine horizontal resolution (1 m). From these simulations, eddy coefficients parametrizating the turbulent fluxes are proposed to be used in larger-scale (RANS) models. The ocean dynamics and the parameter values depend mainly on S. The ocean dynamics is laminar (S > 7.10(-2)), has a localized (7.10-2 < 7.10(-2)) or domain wide turbulent (S < 3.10(-2)) behavior. In the first two cases, changes in seabed elevation are around a few millimeters per month. For the third case, averaged over several days, changes decreases to a few tenths of millimeters per month. This is due to the alternating local velocity which transports sediments back and forth. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available