4.8 Review

PV system fuzzy logic MPPT method and PI control as a charge controller

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 81, Issue -, Pages 994-1001

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2017.08.048

Keywords

PV systems; MPPT methods; DC-DC converters; PI control; Charge controllers

Ask authors/readers for more resources

This paper puts forward to Fuzzy Logic MPPT (Maximum Power Point Tracking) method applied photovoltaic panel sourced boost converter, under variable temperature (25-60 degrees C) and irradiance (700-1000 W/m2) after that the PI control was applied buck converter to behave as a charge controller. The voltage and current of PV panels are nonlinear and they depend on environmental conditions such as temperature and irradiance. Variable environmental conditions cause to change voltage, current and also cause to change maximum available power of PV panels. To increase efficiency and decrease payback period of the system, it needs to operate PV panels at maximum power point (MPP). Under any environment conditions there is unique MPP. To operate PV panels at that point (MPP) there are many MPPT method in literature, FLC MPPT method was preferred in this study because, its rapid response to changing environmental conditions and not affecting by change of circuit parameters. The accuracy of FLC MPPT method used in this system to find MPP changes, from 94.8% to 99.4%. To charge a battery there are two traditional methods which are constant current (CC), and constant voltage (CV) methods. For fast charging with low loss constant current and voltage source is a need. One of the methods providing constant is PI control which used in this study. PI control is not only well developed and a simple technique but also it provides satisfactory results. The goal of this study is operating PV panel at maximum power point under variable environment conditions to increase efficiency and reduce cost and also provide appropriate current and voltage for charging battery to charge quickly, reduce losses and also increase life cycle of battery. This system was established and analyzed in MATLAB/Simulink.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available