3.8 Article

Partial Oxidation of Light Alkanes as a Base of New Generation of Gas Chemical Processes

Journal

EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL
Volume 15, Issue 4, Pages 265-273

Publisher

INST HIGHER EDUCATION ACAD SCI
DOI: 10.18321/ectj231

Keywords

-

Ask authors/readers for more resources

Recent developments in unconventional natural gas production increase the need for principally new small-scale technologies for gas processing and transportation. The promising way for small-scale gas processing is its autothermal partial oxidation to syngas or direct partial oxidation to chemicals. The paper considers some prospective gas chemical processes based on the partial oxidation of light alkanes. Among them are the conversion of natural gas to syngas in volumetric (3D) matrix burners made of a gas permeable material and direct conversion of methane to methanol without its preliminary conversion to syngas (DMTM). As a more simple technology that lets to use fat associated oil gas often flaring in remote sites, it can be suggested the selective oxidative cracking of heavier components of natural gas. This process converts heavy methane homologues from propane to pentane and heavier into ethylene, methane, ethane, hydrogen, and carbon monoxide, thus increasing methane index (octane number) of gas and making it suitable for feeding modern gas piston and gas turbine power engines. One more interesting prospect is the creation of technologies making use of the subsequent processing of valuable oxycracking products, such as olefins, CO, and hydrogen, for example, by their catalytic co-polymerization without preliminary separation from gas phase. The co-polymerization of CO and ethylene, followed by the separation of resulting liquid products, can considerably improve the economic attractiveness of the oxycracing process. Thus, despite the absence of economically proved and industrial-scale tested small-capacity direct and indirect gas chemical technologies, intensive efforts to develop such alternative technologies let to expect near bright future for them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available