4.7 Article

Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: effects of microbiological and physicochemical properties

Journal

BIOGEOSCIENCES
Volume 10, Issue 2, Pages 733-752

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-10-733-2013

Keywords

-

Funding

  1. INRA Meta program ACCAF (Adaptation au Changement Climatique de l'Agriculture et de la Foret)
  2. INRA
  3. RFBR
  4. Bordeaux Sciences Agro
  5. French Embassy in Moscow

Ask authors/readers for more resources

The Siberian forest is a tremendous repository of terrestrial organic carbon (C), which may increase owing to climate change, potential increases in ecosystem productivity and hence C sequestration. Phosphorus (P) availability could limit the C sequestration potential, but tree roots may mine the soil deep to increase access to mineral P. Improved understanding and quantification of the processes controlling P availability in surface and deep soil layers of Siberian forest ecosystems are thus required. The objectives of the present study were to (1) evaluate P status of surface and deep soil horizons from different forest plots in southwestern Siberia and (2) assess the effects of physicochemical soil properties, microbiological activity and decomposition processes on soil P fractions and availability. Results revealed high concentrations of total P (879-1042 mg kg(-1) in the surface mineral soils) and plant-available phosphate ions. In addition, plant-available phosphate ions accumulated in the subsoil, suggesting that deeper root systems may mine sufficient available P for the trees and the potentially enhanced growth and C sequestration, may not be P-limited. Because the proportions of total organic P were large in the surface soil layers (47-56% of total P), we concluded that decomposition processes may play a significant role in P availability. However, microbiological activity and decomposition processes varied between the study plots and higher microbiological activity resulted in smaller organic P fractions and consequently larger available inorganic P fractions. In the studied Siberian soils, P availability was also controlled by the physicochemical soil properties, namely Al and Fe oxides and soil pH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available