3.8 Article

The Tree of Life and a New Classification of Bony Fishes

Journal

PLOS CURRENTS-TREE OF LIFE
Volume -, Issue -, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

Keywords

-

Funding

  1. NSF [DEB-0732988, DEB-0732838, DEB-1019308, DEB-0732819, DEB 0732589, DEB-0732894, DEB 0963767, DEB-0732969]
  2. GWU Selective Excellence in Diversity of Life program
  3. Leading Academic Discipline Project of Shanghai Municipal Education Commission [S30701]
  4. Biodiversity Institute, University of Kansas
  5. Division Of Environmental Biology
  6. Direct For Biological Sciences [0963767] Funding Source: National Science Foundation
  7. Division Of Environmental Biology
  8. Direct For Biological Sciences [1019308] Funding Source: National Science Foundation

Ask authors/readers for more resources

The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available