4.0 Article

Targeted Radionuclide Therapy - An Overview

Journal

CURRENT RADIOPHARMACEUTICALS
Volume 6, Issue 3, Pages 152-180

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/18744710113066660023

Keywords

Antibodies; Auger electron; cytotoxic; hepatocellular carcinoma (HCC); nanoparticles; non-Hodgkin's lymphoma (NHL); neuroendocrine tumors (NET); osteogenesis; peptides; phagocytosis; radioisotopes; radionuclides; radiosynovectomy; somatostatin (SST) receptor

Funding

  1. Department of Atomic Energy, India
  2. US Department of Energy [DE-AC0500OR22725]
  3. UT-Battelle, LLC

Ask authors/readers for more resources

Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available