4.6 Article

Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles

Journal

OPTICS EXPRESS
Volume 21, Issue 1, Pages 245-255

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.21.000245

Keywords

-

Categories

Funding

  1. Natural Science and Engineering Research Council of Canada
  2. Canada Foundation for Innovation
  3. Canada Research Chairs program

Ask authors/readers for more resources

The properties of the high order cladding modes of standard optical fibers are measured in real-time during the deposition of gold nanoparticle layers by chemical vapor deposition (CVD). Using a tilted fiber Bragg grating (TFBG), the resonance wavelength and peak-to-peak amplitude of a radially polarized cladding mode resonance located 51 nm away from the core mode reflection resonance shift by 0.17 nm and 13.54 dB respectively during the formation of a similar to 200 nm thick layer. For the spectrally adjacent azimuthally polarized resonance, the corresponding shifts are 0.45 nm and 16.34 dB. In both cases, the amplitudes of the resonance go through a pronounced minimum of about 5 dB for thickness between 80 and 100 nm and at the same time the wavelengths shift discontinuously. These effects are discussed in terms of the evolving metallic boundary conditions perceived by the cladding modes as the nanoparticles grow. Scanning Electron Micrographs and observations of cladding mode light scattering by nanoparticle layers of various thicknesses reveal a strong correlation between the TFBG polarized transmission spectra, the grain size and fill factor of the nanoparticles, and the scattering efficiency. This allows the preparation of gold nanoparticle layers that strongly discriminate between radially and azimuthally polarized cladding mode evanescent fields, with important consequences in the plasmonic properties of these layers. (c) 2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available