4.8 Article

Reactivity of O-2 versus H2O2 with polysaccharide monooxygenases

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1801153115

Keywords

oxygen; hydrogen peroxide; monooxygenase

Funding

  1. NSF [1565770]
  2. National Institutes of Health [1S10OD020062-01]
  3. OFFICE OF THE DIRECTOR, NATIONAL INSTITUTES OF HEALTH [S10OD020062] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Enzymatic conversion of polysaccharides into lower-molecular-weight, soluble oligosaccharides is dependent on the action of hydrolytic and oxidative enzymes. Polysaccharide monooxygenases (PMOs) use an oxidative mechanism to break the glycosidic bond of polymeric carbohydrates, thereby disrupting the crystalline packing and creating new chain ends for hydrolases to depolymerize and degrade recalcitrant polysaccharides. PMOs contain a mononuclear Cu(II) center that is directly involved in C-H bond hydroxylation. Molecular oxygen was the accepted cosubstrate utilized by this family of enzymes until a recent report indicated reactivity was dependent on H2O2. Reported here is a detailed analysis of PMO reactivity with H2O2 and O-2, in conjunction with high-resolution MS measurements. The cosubstrate utilized by the enzyme is dependent on the assay conditions. PMOs will directly reduce O-2 in the coupled hydroxylation of substrate (monooxygenase activity) and will also utilize H2O2 (peroxygenase activity) produced from the uncoupled reduction of O-2. Both cosubstrates require Cu reduction to Cu(I), but the reaction with H2O2 leads to nonspecific oxidation of the polysaccharide that is consistent with the generation of a hydroxyl radical-based mechanism in Fenton-like chemistry, while the O-2 reaction leads to regioselective substrate oxidation using an enzyme-bound Cu/O-2 reactive intermediate. Moreover, H2O2 does not influence the ability of secretome from Neurospora crassa to degrade Avicel, providing evidence thatmolecular oxygen is a physiologically relevant cosubstrate for PMOs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available