4.8 Article

Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1804670115

Keywords

LPS biogenesis; ABC transporter; high-throughput screening; MsbA inhibitor; Acinetobacter

Funding

  1. NIH [U19 AI109764, R01 AI081059]
  2. Blavatnik Biomedical Accelerator at Harvard University
  3. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI081059, U19AI109764] Funding Source: NIH RePORTER

Ask authors/readers for more resources

New drugs are needed to treat gram-negative bacterial infections. These bacteria are protected by an outer membrane which prevents many antibiotics from reaching their cellular targets. The outer leaflet of the outer membrane contains LPS, which is responsible for creating this permeability barrier. Interfering with LPS biogenesis affects bacterial viability. We developed a cell-based screen that identifies inhibitors of LPS biosynthesis and transport by exploiting the nonessentiality of this pathway in Acinetobacter. We used this screen to find an inhibitor of MsbA, an ATP-dependent flippase that translocates LPS across the inner membrane. Treatment with the inhibitor caused mislocalization of LPS to the cell interior. The discovery of an MsbA inhibitor, which is universally conserved in all gram-negative bacteria, validates MsbA as an antibacterial target. Because our cell-based screen reports on the function of the entire LPS biogenesis pathway, it could be used to identify compounds that inhibit other targets in the pathway, which can provide insights into vulnerabilities of the gram-negative cell envelope.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available