4.8 Article

Mechanogenetics for the remote and noninvasive control of cancer immunotherapy

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1714900115

Keywords

ultrasound; mechanogenetics; remote control; cancer immunotherapy; synthetic biology

Funding

  1. National Institutes of Health [HL121365, GM125379, CA204704, CA209629]
  2. National Science Foundation [CBET1360341, DMS1361421]
  3. Beckman Laser Institute Foundation

Ask authors/readers for more resources

While cell-based immunotherapy, especially chimeric antigen receptor (CAR)-expressing T cells, is becoming a paradigm-shifting therapeutic approach for cancer treatment, there is a lack of general methods to remotely and noninvasively regulate genetics in live mammalian cells and animals for cancer immunotherapy within confined local tissue space. To address this limitation, we have identified a mechanically sensitive Piezo1 ion channel (mechanosensor) that is activatable by ultrasound stimulation and integrated it with engineered genetic circuits (genetic transducer) in live HEK293T cells to convert the ultrasound-activated Piezo1 into transcriptional activities. We have further engineered the Jurkat T-cell line and primary T cells (peripheral blood mononuclear cells) to remotely sense the ultrasound wave and transduce it into transcriptional activation for the CAR expression to recognize and eradicate target tumor cells. This approach is modular and can be extended for remote-controlled activation of different cell types with high spatiotemporal precision for therapeutic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available