4.8 Article

Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1719979115

Keywords

Catharanthus roseus monoterpeoind indole alkaloids; virus-induced gene silencing; catharanthine assembly; tabersonine assembly; multiple-pathway gene function

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Research Chairs
  3. Advanced Biomanufacturing Center (Brock University)

Ask authors/readers for more resources

Monoterpenoid indole alkaloids (MIAs) possess a diversity of alkaloid skeletons whose biosynthesis is poorly understood. A bioinformatic search of candidate genes, combined with their virus-induced gene silencing, targeted MIA profiling and in vitro/in vivo pathway reconstitution identified and functionally characterized six genes as well as a seventh enzyme reaction required for the conversion of 19E-geissoschizine to tabersonine and catharanthine. The involvement of pathway intermediates in the formation of four MIA skeletons is described, and the role of stemmadenine-O-acetylation in providing necessary reactive substrates for the formation of iboga and aspidosperma MIAs is described. The results enable the assembly of complex dimeric MIAs used in cancer chemotherapy and open the way to production of many other biologically active MIAs that are not easily available from nature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available