4.5 Article

Biobased epoxy resin derived from eugenol with excellent integrated performance and high renewable carbon content

Journal

POLYMER INTERNATIONAL
Volume 67, Issue 9, Pages 1194-1202

Publisher

WILEY
DOI: 10.1002/pi.5621

Keywords

biomass; epoxy resin; flame retardancy; thermal properties

Funding

  1. National Natural Science Foundation of China [21274104]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China
  3. Postgraduate Research & Practice Innovation Program of Jiangsu Province, China [KYLX16_0120]

Ask authors/readers for more resources

Developing biobased epoxy resin with high renewable carbon content and outstanding integrated performance is beneficial for both sustainable development and applications in cutting-edge fields. Herein, a biobased epoxy monomer (TEUP-EP) with high renewable carbon content (100%) was synthesized from renewable eugenol with a sustainable process; TEUP-EP was then blended with 4,4'-diaminodiphenylmethane (DDM) to develop a new biobased epoxy resin (TEUP-EP/DDM). The integrated performance of TEUP-EP/DDM resin was studied and compared with that of petroleum-based diglycidyl ether of bisphenol A (DGEBA)/DDM resin. Compared with DGEBA/DDM resin, TEUP-EP/DDM resin has much better integrated performance and not only exhibits a glass transition temperature about 26 degrees C higher and a 24.4% or 57% increased flexural strength or modulus, but also shows outstanding flame retardancy. Specifically, the limiting oxygen index increases from 26.5% to 31.4% and the UL-94 grade improves from no rating to the V-0 level; moreover, the peak heat release rate and total heat release decreased by 63.1% and 57.4%, respectively. All these results fully prove that TEUP-EP/DDM is a novel biobased high performance epoxy resin. The mechanism behind these attractive integrated performances is discussed intensively. (C) 2018 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available