4.7 Article

Alternating copolymerization of epoxides with carbon dioxide or cyclic anhydrides using bimetallic nickel and cobalt catalysts: Preparation of hydrophilic nanofibers from functionalized polyesters

Journal

POLYMER
Volume 141, Issue -, Pages 1-11

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2018.02.063

Keywords

CO2-Based polymer; Functionalized polyester; Bimetallic catalyst

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 106-2113-M-005-003, MOST 104-2221-E-035-078-MY2, MOST 106-2221-E-035-083, MOST 106-2632-E-035-001]

Ask authors/readers for more resources

A series of di-nuclear metal acetate complexes 1-6 incorporated by nitrogen heterocycle-containing salen-type ligands have been synthesized, structurally characterized and performed as catalysts to prepare biodegradable polycarbonates and polyesters. Their catalytic performances for copolymerization of carbon dioxide-epoxides or cyclic anhydride-epoxides were systematically examined. Bimetallic nickel(II) complexes 1, 2 and 5 were active catalysts for the alternating copolymerization of cyclohexene oxide (CHO) with CO2; di-nickel complex 1 was shown to be the most effective and selective, leading to obtaining poly(cyclohexene carbonate) s with the best efficiency among them. Moreover, complex 1 was also found to be versatile for the ring-opening copolymerization of CO2 with different cyclic epoxides to give the corresponding polycarbonates. Additionally, di-cobalt(II) analogs 3, 4 and 6 were efficient catalysts for the alternating copolymerization of CHO and phthalic anhydride (PA) under mild conditions. Based on the results of catalytic studies, complex 3 was demonstrated to be the most active one CHO-PA copolymerization, producing the polymeric products with a controlled manner involving controllable molecular weights and narrow polydispersity. Interestingly, Co complex 3 was also able to catalyze the copolymerization of PA with 4-vinyl-1,2-cyclohexene oxide to obtain the associated polyester with the vinyl functionality on the side chains, which was further functionalized with tertiary amine moieties via thiol-ene click functionalization and converted to nanofibers through electrospinning. Due to the incorporation of polar groups, the resulting tertiary amine-modified polyester nanofibers that exhibit an improved hydrophilic property relative to their un-modified counterpart have been considered to have high potential to be utilized as a new functional fiber material. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available