4.6 Article

The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles

Journal

PLOS ONE
Volume 13, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0197501

Keywords

-

Funding

  1. CNRS, The University of Grenoble Alpes
  2. Investissements d'Avenir French Government program of the French National Research Agency (ANR) through the A*MIDEX project [ANR-11-LABX-0064, ANR-11-IDEX-0001-02]

Ask authors/readers for more resources

For many years, silver nanoparticles, as with other antibacterial nanoparticles, have been extensively used in manufactured products. However, their fate in the environment is unclear and raises questions. We studied the fate of silver nanoparticles in the presence of bacteria under growth conditions that are similar to those found naturally in the environment (that is, bacteria in a stationary phase with low nutrient concentrations). We demonstrated that the viability and the metabolism of a gram-positive bacteria, Bacillus subtilis, exposed during the stationary phase is unaffected by 1 mg/L of silver nanoparticles. These results can be partly explained by a physical interaction of the poly-gamma-glutamate (PGA) secreted by Bacillus subtilis with the silver nanoparticles. The coating of the silver nanoparticles by the secreted PGA likely results in a loss of the bioavailability of nanoparticles and, consequently, a decrease of their biocidal effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available